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Abstract

In this paper, we establish sufficient criteria for the existence of so-
lutions for a new kind of nonlinear Langevin equation involving con-
formable differential operators of different orders and equipped with
integral boundary conditions. We apply the modern tools of functional
analysis to derive the desired results for the problem at hand. Examples
are constructed for the illustration of the obtained results.

1 Introduction

Langevin equation is an important tool of mathematical physics, which suc-
cessfully describes the processes like anomalous diffusion, price index fluc-
tuations [1], fractal environment in the irreversible dynamics of a harmonic
oscillator [2] and so forth. When the separation of the microscopic and macro-
scopic time scales does not exist in the systems, the fractional analogue (also
known as stochastic differential equation) of the usual Langevin equation is
suggested, for example, see [1]. In [3], the author investigated moments, vari-
ances, position and velocity correlation for a fractional Langevin equation
with Riemann-Liouville fractional time derivative and compared the obtained
results with the ones derived for the same generalized Langevin equation in-
volving Caputo fractional derivative. For some recent works on boundary
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value problems involving Langevin equation, we refer the reader to the papers
[4] - [9] and the references cited therein.

In [10, 11], the concept of so called “conformable fractional differential and
integral operators” was introduced and elaborated. However, the conformable
fractional differential operator has no relation with fractional calculus. It is
better to call such an operators as “conformable differential operator”. In
[12], some more results for conformable calculus were obtained. In [13], the
authors studied the stability and asymptotic stability of conformable nonlin-
ear differential systems by using Lyapunov function. In a recent article [14],
the authors discussed the existence of positive solutions for a conformable
differential equation equipped with integral boundary conditions.

In the present paper, we introduce a new type of nonlinear Langevin equa-
tion involving conformable differential operators of different orders and solve
it with integral boundary conditions. In precise terms, we investigate the
existence of solutions for the following problem:{

Tα(Tβ + λ)x(t) = f(t, x(t)), λ, µ ∈ R, t ∈ J := [0, τ ],

x(0) = 0, x(τ) = µ
∫ τ

0
x(s)ds, µ ∈ R,

(1)

where Tα, Tβ are the conformable differential operators of order α, β ∈ (0, 1]
and f : [0, τ ]× R→ R is a given continuous function.

2 Preliminaries

In this section, we briefly describe some basic concepts of conformable calculus
[10, 11], related to our work. In the sequel, we omit the word “fractional” from
the related literature.
Definition 2.1 For α ∈ (0, 1], the conformable derivative of a function f :
[a,∞)→ R of order α is defined by

T aαf(t) = lim
ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
, for all t > a. (2)

If T aαf(t) exist on (a, b) then T aαf(a) = limt→a+ T
a
αf(t).

Definition 2.2 Let α ∈ (n, n + 1]. The conformable derivative of a function
f : [a,∞)→ R of order α when f (n)(t) exists, is defined by

T aαf(t) = T aα−nf
(n)(t). (3)

Definition 2.3 Let α ∈ (n, n + 1]. The conformable integral of a function
f : [a,∞)→ R of order α is defined by

Iaαf(t) =
1

n!

∫ t

a

(t− s)n(s− a)α−n−1f(s)ds. (4)
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Lemma 2.1 Let α ∈ (n, n+ 1]. If f (n)(t) is a continuous function on [a,∞),
then, for all t > a, T aαI

a
αf(t) = f(t).

Lemma 2.2 Let α ∈ (n, n + 1]. Then T aα(t − a)k = 0 for all t ∈ [a, b] and
k = 1, 2, . . . , n.

Lemma 2.3 Let α ∈ (n, n+ 1]. If T aαf(t) is a continuous function on [a,∞),
then

IaαT
a
αf(t) = f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
, ∀t > a. (5)

In passing, we remark that Iα and Tα respectively denote the conformable
integral and conformable derivative of f with a = 0.

Lemma 2.4 Let h ∈ C(0, τ). Then the unique solution of the boundary value
problem: {

Tα(Tβ + λ)x(t) = h(t), t ∈ J := [0, τ ],

x(0) = 0, x(τ) = µ
∫ τ

0
x(s)ds,

(6)

is given by

x(t) = Iβ(Iαh(s))(t)− λIβx(t) +
tβ

βΩ

{
µ

∫ τ

0

Iβ(Iαh(u))(s)ds− Iβ(Iαh(s))(τ)

−λ
(
µ

∫ τ

0

Iβx(s)ds− Iβx(τ)
)}
,

(7)
where it is assumed that

Ω :=
τβ(β + 1− µτ)

β(β + 1)
6= 0. (8)

Proof. Applying the operator Iα on both sides of the fractional differential
equation in (6) and using Lemma 2, we obtain

(Tβ + λ)x(t) = Iαh(t) + c1, (9)

for some c1 ∈ R. Next, applying the operator Iβ on both sides of (9), we get

x(t) = Iβ(Iαh(s))(t)− λIβx(t) + c1
tβ

β
+ c2. (10)

Using the boundary conditions given by (6) in (10), we find that c2 = 0 and

c1 =
1

Ω

{
µ

∫ τ

0

Iβ(Iαh(u))(s)ds− Iβ(Iαh(s))(τ)

−λ
(
µ

∫ τ

0

Iβx(s)ds− Iβx(τ)
)}
.
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Substituting the values of c1 and c2 in (10) yields the solution (7). The converse
follows by direct computation. The proof is completed. �

3 Existence and uniqueness results

In this section, we derive existence and uniqueness results for the problem (1)
in a Banach space C of all continuous functions from [0, τ ] to R endowed with
the norm ‖x‖ = supt∈[0,τ ] |x(t)|. By Lemma 2, we define an operator G : C→ C

by

G(x)(t) = Iβ(Iαf(s, x(s)))(t)− λIβx(t) +
tβ

βΩ

{
µ

∫ τ

0

Iβ(Iαf(u, x(u)))(s)ds

−Iβ(Iαf(s, x(s)))(τ)− λ
(
µ

∫ τ

0

Iβx(s)ds− Iβx(τ)
)}
. (11)

For brevity, we set the notations:

Λ1 =
τα+β

α(α+ β)

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

(α+ β + 1)

)}
, (12)

and

Λ2 = |λ|τ
β

β

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

β + 1

)}
. (13)

Our first result dealing with the existence of solutions for the problem (1)
relies on Krasnoselskii’s fixed point theorem [15], which is stated below.

Lemma 3.1 (Krasnoselskii’s fixed point theorem ). Let E be a Banach space
and U be a closed convex and nonempty subset of E. Let A1,A2 be the op-
erators defined on U to E such that (i) A1u + A2v ∈ U whenever u, v ∈ U;
(ii) A1 is compact and continuous; and (iii) A2 is a contraction. Then there
exists s ∈ U such that s = A1s+ A2s.

Theorem 3.2 Let f : J × R → R be a continuous function satisfying the
following condition:

(H1) there exists a continuous function ψ ∈ C([0, τ ],R+) such that

|f(t, x)| ≤ ψ(t), ∀(t, x) ∈ J × R.

Then the problem (1) has at least one solution on J, provided that

Λ2 < 1, (14)
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where Λ2 is given by (13).

Proof. Consider the set Br = {x ∈ C : ‖x‖ ≤ r} with r > ‖ψ‖Λ1

1−Λ2
, where

‖ψ‖ = supt∈[0,τ ] |ψ(t)|, Λ1 and Λ2 are given by (12) and (13) respectively.
Define operators G1 and G2 from Br to C as follows:

G1(t) = Iβ(Iαf(s, x(s)))(t)

+
tβ

βΩ

{
µ

∫ τ

0

Iβ(Iαf(u, x(u)))(s)ds− Iβ(Iαf(s, x(s)))(τ)
}
,

G2(t) = −λIβx(t)− λtβ

βΩ

{
µ

∫ τ

0

Iβx(s)ds− Iβx(τ)
)}
.

Notice that G = G1 + G2 on Br. Now we verify the hypothesis of Lemma 3.
For x, y ∈ Br, we find that

‖G1x+ G2y‖

≤ sup
t∈J

{
Iβ(Iα|f(s, x(s))|)(t) + |λ|Iβ |y(t)|+ tβ

β|Ω|

{
|µ|
∫ τ

0

Iβ(Iα|f(u, x(u))|)(s)ds

+Iβ(Iα|f(s, x(s))|)(τ) + |λ|
(
|µ|
∫ τ

0

Iβ |y(s)|ds+ Iβ |y(τ)|
)}

≤ ‖ψ‖

{
τα+β

α(α+ β)

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

(α+ β + 1)

)}}

+‖y‖

{
|λ|τ

β

β

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

β + 1

)}}
≤ ‖ψ‖Λ1 + rΛ2 < r,

which implies that G1x+ G2y ∈ Br. Next, we show that G2 is a contraction.
For that, let x, y ∈ C. Then

‖G2x− G2y‖ ≤ sup
t∈J

{
|λ|Iβ |x(t)− y(t)|+ |λ| t

β

β|Ω|

{
|µ|
∫ τ

0

Iβ |x(s)− y(s)|ds

+ Iβ |x(τ)− y(τ)|
}}

≤ |λ|τ
β

β

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

β + 1

)}
‖x− y‖

= Λ2‖x− y‖,

which together with the condition (14) implies that G2 is a contraction.
Continuity of f implies that the operator G1 is continuous. Also, G1 is uni-
formly bounded on Br as

‖G1x‖ ≤ ‖ψ‖Λ1.
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In order to show the compactness of the operator G1, let sup(t,x)∈J×Br
|f(t, x)| =

f̄ <∞. Then, for t1, t2 ∈ J, t1 < t2, we have

|(G1x)(t2)− (G1x)(t1)|

≤
∣∣∣ ∫ t2

0

sβ−1
(∫ s

0

uα−1f(u, x(u))du
)
ds−

∫ t1

0

sβ−1
(∫ s

0

uα−1f(u, x(u))du
)
ds

+
tβ2 − t

ρ
1

βΩ

{
µ

∫ τ

0

Iβ(Iαf(u, x(u)))(s)ds− Iβ(Iαf(s, x(s)))(τ)
}∣∣∣

≤
( f̄ |tα+β2 − tα+β1 |

α(α+ β)
+
f̄ |tβ2 − t

ρ
1|

β|Ω|

{ τα+β

α(α+ β)

(
1 + |µ| τ

(α+ β + 1)

)})
→ 0

as t2 → t1,

independently of x ∈ Br. Thus G1 is equicontinuous. So G1 is relatively com-
pact on Br. Hence, by the Arzelá-Ascoli theorem, G1 is compact on Br. Thus
all the assumptions of Lemma 3 are satisfied. So the conclusion of Lemma 3
applies and that the problem (1) has at least one solution on J. �

In the next result, we prove the uniqueness of solutions for the problem (1)
by applying Banach’s fixed point theorem.

Theorem 3.3 Assume that f : J ×R→ R is a continuous function satisfying
the following condition:

(H2) there exists a positive constant L such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for t ∈ J and for every x, y ∈ R.

Then there exists a unique solution for the problem (1) on J provided that

LΛ1 + Λ2 < 1, (15)

where Λ1 and Λ2 are respectively given by (12) and (13).

Proof : Let us define Br̄ = {x ∈ C([0, T ],R) : ‖x‖ ≤ r̄} with

r̄ ≥ Λ1M

1− LΛ1 − Λ2
, sup
t∈[0,τ ]

|f(t, 0)| = M

and show that GBr̄ ⊂ Br̄, where the operator G : C → C is defined by (11).
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For x ∈ Br̄, using (H2), we get

|G(x)(t)|
≤ Iβ(Iα[|f(s, x(s))− f(s, 0)|+ |f(s, 0)|])(t) + |λ|Iβ |x(t)|

+
tβ

β|Ω|

{
|µ|
∫ τ

0

Iβ(Iα[|f(u, x(u))− f(u, 0)|+ |f(u, 0)|])(s)ds

+Iβ(Iα[|f(s, x(s))− f(s, 0)|+ |f(s, 0)|])(τ) + |λ|
(
|µ|
∫ τ

0

Iβ |x(s)|ds+ Iβ |x(τ)|
)

≤ (Lr̄ +M)
( τα+β

α(α+ β)

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

(α+ β + 1)

)})
+r̄
(
|λ|τ

β

β

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

β + 1

)})
= (Lr̄ +M)Λ1 + Λ2r̄ ≤ r̄,

which, on taking the norm for t ∈ [0, τ ], yields ‖G(x)‖ ≤ r̄. This shows that G
maps Br̄ into itself. In order to show that the operator G is a contraction, let
x, y ∈ C([0, τ ],R). Then, for each t ∈ [0, τ ], we obtain

|G(x)(t)− G(y)(t)| = Iβ(Iα|f(s, x(s))− f(s, y(s))|)(t) + |λ|Iβ |x(t)− y(t)|

+
tβ

β|Ω|

{
|µ|
∫ τ

0

Iβ(Iα|f(u, x(u))− f(u, y(u))|)(s)ds

+Iβ(Iα|f(s, x(s))− f(s, y(s))|)(τ)

+|λ|
(
|µ|
∫ τ

0

Iβ |x(s)− y(s)|ds+ Iβ |x(τ)− y(τ)|
)

≤ L‖x− y‖
( τα+β

α(α+ β)

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

(α+ β + 1)

)})
+‖x− y‖

(
|λ|τ

β

β

{
1 +

τβ

β|Ω|

(
1 + |µ| τ

β + 1

)})
= (LΛ1 + Λ2)‖x− y‖.

Taking the norm of the above inequality for t ∈ [0, τ ]], we obtain ‖G(x) −
G(y)‖ ≤ (LΛ1 + Λ2)‖x− y‖, which, in view of the condition (15), implies that
the operator G is a contraction. Hence the operator G has a unique fixed point
by contraction mapping principle, which corresponds to a unique solution of
the problem (1). �

Example. Let us consider the following boundary value problem T1/4

(
T3/4 + 1/9

)
x(t) = f(t, x(t)), t ∈ J := [0, 2],

x(0) = 0, x(2) = 1/5
∫ 2

0
x(s)ds.

(16)

Here α = 1/4, β = 3/4, λ = 1/9, µ = 1/5, τ = 2 and f(t, x(t)) will be fixed
later.
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Using the given data, we find that |Ω| ≈ 1.729844, Λ1 ≈ 20.444444, and
Λ2 ≈ 0.645956, where Ω, Λ1, and Λ2 are given by (8), (12) and (13) respec-
tively.
For illustrating Theorem 3 we take

f(t, x) =
1

4
√

900 + t

( |x(t)|
|x(t)|+ 1

+ tan−1 x(t) + e−t
)
. (17)

Clearly f(t, x) is continuous and satisfies the condition (H1) with

ψ(t) =
π + 2(1 + e−t)

8
√

900 + t
.

Also
Λ2 ≈ 0.645956 < 1.

Thus all the conditions of Theorem 3 are satisfied and consequently there
exists at least one solution for the problem (16) with f(t, x) given by (17) on
[0, 2].
In order to illustrate Theorem 3, we choose

f(t, x) =
e−t

(12 + t)2

(
sinx+ cos t

)
. (18)

It easy to check that f(t, x) is continuous and satisfies the Lipschitz condition
with L = 1/144. Also

LΛ1 + Λ2 ≈ 0.7879314 < 1.

Thus the hypothesis of Theorem 3 holds true. Hence the problem (16) with
f(t, x) given by (18) has a unique solution on [0, 2].

4 Conclusions

We introduced a new form of Langevin equation involving conformable dif-
ferential operators of different orders and studied it subject to the integral
boundary conditions. The existence results for the given problem are derived
with the aid of standard fixed point theorems. Our results are new and reduce
to the ones for a second-order integral boundary value problem when α, β → 1.
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